A can build a wall in 30 days. B can demolish that wall in 60 days. If A and B work on alternate days, when will the wall be completed?

a) 180 days b) 90 days c) 120 days d) 60 days

Answer is : C

Solution :

Given :-
1. A build in                 => 30 days
2. B demolish in           => 60 days

What To Find:- 
How much time will it take to build the wall if A and B work in Alternative days?

Procedure :-
1. in 1 day A can build = 1/30 th part
2. in 1 day B can be fill = -1/60 th part

So,
for first 2 days A and B can build   = 1/30 - 1/60   = 1/60
=> In 2 minutes A+B+C can  be  build   = 1/60th Part.
=> Time taken to build   1/60 part          =  2 days
=> Time taken to build   full part             =  2 * 60 days = 120 days.


(Note :- in Problem it is clear that  first 
      A will work for  1 day and then
      B will work for  1 day
      and again A and B and so on......
So for first 2 days A and B will work each for one day)






Pipes A and B can fill a cistern in 20 min and 30 min and C can empty it in 15 min. If the three are kept open successively for 1 min each in the order how soon will the cistern be filled?

a) 180min b) 90min c) 120 min d) 60 min

Answer is : A

Solution :

Given :-
1. A fills in                 => 20 min
2. B fills in                 => 30 min
3. C can empty in      => 15 min

What To Find:- 
How much time will it take to fill the cistern if we use each for one minute in order one by one?

Procedure :-
1. in 1 minute A can be fill = 1/20th part
2. in 1 minute B can be fill = 1/30th part
3. in 1 minute C can be fill = -1/15th part

So,
for first 3 minutes A, B and C can fill  = 1/20 + 1/30 - 1/15 = 1/60
=> In 3 minutes A+B+C can  be  fill   = 1/60th Part.
=> Time taken to fill  1/60 part          =  3 min
=> Time taken to fill full part             =  3 * 60 min = 180 minutes.


(Note :- in Problem it is clear that  first 
      A will be opened for 1 min and then
      B opened for 1 minute and then 
      C opened for 1 minute 
      and again A,B and then C and so on......
So for first 3 minutes A, B and C will be Opened each for one minute)






How many 3 digit numbers sum will have sum 18?

a) 51 b) 54 c) 61 d) 64

Answer is : B

Solution :

Given :-
1. Number is 3 digitnumber.
2. Sum should be 18.

What To Find:- 
How many such numbers exist?

Procedure :-
Numbers starts with 1  ð 198, 189.................................= 2 numbers
Numbers starts with 2  ð 297, 279, 288..........................= 3 numbers
Numbers starts with 3  ð 396, 387, 378, 369...................= 4 numbers
Numbers starts with 4  ð 495, 486, 477. 468, 459............= 5 numbers
Numbers starts with 5  ð 594, 585, 576. 567, 558, 549.....= 6 numbers
similaly....
Numbers starts with 6  ð 7 numbers
Numbers starts with 7  ð 8 numbers
Numbers starts with 8  ð 9 numbers
Numbers starts with 9  ð 10 numbers

Total Numbers are ð 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 54




A, B, C are in GP and M,N,O are in AP, then (O-N)log A + (M-O)log B + (N-M)log C is equal to ?

Options : 

A) (O-N)log ABC 

B) 0 

C) 1 

D) none

Answer is : B

Solution :

Given :-
1. A, B, C are in GP. So B2 =  A C
2. M,N,O are in AP. So
    => O-N = N-M = x (assume),
then   => (O–M) = 2(O–N) = 2x. 

What To Find:- 
value of (O-N)log A + (M-O)log B + (N-M)log C

Procedure :-
Remind that (O-M) = 2x,so  (M-O) = -2x
Now, find value
  (O-N)log A + (M-O)log B + (N-M)log C   
=>  X log  A - 2X log B   + X log C   
=>  X (log A - 2 log B + log C)
=>  X (log A -  log B2 + log C)
=>  X(log AC – log  B2)
=>  X(log B2 – log  B2)
=>  X(0)
=>  0.



Compute the number of distinct ways in which 56 toffees can be distributed to 5 persons A,B,C,D and E so that no person receives less than 10 toffees(toffee can not be devided)?

Options : A) 210 B) 240 C) 180 D) 230

Answer is : A

Solution :


Given :-
1. 56 toffees are there
2. 5 members are there
3. no person receives less than 10 toffees

What To Find:- 

No. of distinct ways to distribute.

Procedure :-
1. No person recieves less than 10 toffees.
So distribute 10 toffees to five members.
2. Remaining toffees are 6.
3. These 6 toffees we have got to share for 5 persons.
Formula :- If we share n elements to r members
then number of distinct distributions are : (n+r-1)C(r-1).
4. If we share 6 elements to 5 members.
number of distinct distributions are
(6+5-1)C(5-1) = 10C4 = 210


Please Share on Facebook if you like it.



How many 3 digit numbers are there in which product of their digit is 36. Ex: 236, in this.. product of digit is 36?

Options : A) 32 B) 36 C) 21 D) 15

Answer is : C

Solution :


Given :-
1. Each number is 3 digit number
2. Product Of digits is 36

What To Find:- 
How many such numbers are there.

Procedure :-
1. Factors of 36 are  :
                1 X 36
2 X 18
3 X 12
4 X 9
6 X 6
2. Sub Factors are :

        1 X 36   ---> 1 X (1 X 36)  --> Not 3 digit number
      ---> 1 X (2 X 18)  --> Not 3 digit number
      ---> 1 X (3 X 12)  --> Not 3 digit number
  ---> 1 X (4 X 9)   --> 3 digit number

2 X 18   ---> 2 X (1 X 18)  --> Not 3 digit number
                 ---> 2 X (2 X 9)   --> 3 digit number
      ---> 2 X (3 X 6)   --> 3 digit number

3 X 12   ---> 3 X (1 X 12)  --> Not 3 digit number
                ---> 3 X (2 X 6)   --> 3 digit number
      ---> 3 X (3 X 4)   --> 3 digit number

4 X 9    ---> 4 X 9 X 1     --> 3 digit number
               ---> 4 X (3 X 3)   --> 3 digit number
      ---> (2 X 2) X 9   --> 3 digit number
6 X 6    ---> 6 X (6 X 1)   --> 3 digit number
               ---> 6 X (2 X 3)   --> 3 digit number

4. Total 3 digit numbers we got from above list are :
     
149, 194, 491, 491, 914, 941     ---  6
229, 292, 922,                          ---  3
  236, 263, 632, 623. 326, 362     ---  6
334, 343, 433                           ---  3
661, 616, 166                           ---  3
---------------------------------------------
Total Numbers are :                  ---  21
---------------------------------------------
       
Please Share on Facebook if you like it.



32400 students login everyday to elitmus website. And stay on the website for 9 minutes. If the access for website is only 18 hours in a day, how many students can be found online at any point of time?

Options : A) 324 B) 300 C) 270 D) 200

Answer is : C

Solution :


Given :-
1. 32400 students login everyday
2. every student stays for 9 minutes.
3. accessible times is 18 hours

What To Find:- 
Total Students can be found at any sec ?

Procedure :-
1, accessible time is 18 hours = 18 * 60 minutes
2. how many 9 minutes exist in 18 hours = 18 * 60 / 9 = 120  (say this is period)
3. So total students  have to access the site  in one of  these 120 periods.
4. at any point total students can be found = 32400 / 120 = 270.

So.... Simple...... :-)